EECS 562

Homework 4

1. Let the message signal be

 $x_{\rm bb}(t) = 1\cos(3000\pi t) + 2\cos(2000\pi t) + 3\cos(1000\pi t)$

be input to a DSB-SC modulator at a carrier frequency of 50kHz and an unmodulated carrier amplitude of 10.

- a. Find the Fourier transform of the DSB-SC signal.
- b. Plot the spectrum of the DSB-SC signal.
- c. Identify the upper and lower sideband in the DSB-SC signal.
- d. What is the RF bandwidth?
- e. What is the total transmitted power?
- **2.** Let the message signal be $x_{bb}(t)$ =5rect(t/0.001) be input to a DSB-SC modulator at a carrier frequency of 40kHz and an unmodulated carrier amplitude of 5.
 - a. Find the Fourier transform of the DSB-SC signal.
 - b. Plot the spectrum of the DSB-SC signal.
 - c. What is the RF bandwidth?
- **3.** Let the message signal be $x_{bb}(t) = 1000 \operatorname{sinc}^2(5000t)$ be input to a DSB-SC modulator at a carrier frequency of 50 kHz and an unmodulated carrier amplitude of 10.
 - a. Plot the spectrum of the DSB-SC signal.
 - b. What is the RF bandwidth?
- **4.** Consider a sequence of information bits b_i {....0,1,0,1,0,1,0,1....}, That is, alternating 0's and 1's. A baseband analog message signal m(t) is formed as

$$m(t) = \sum_{k=-\infty}^{\infty} d_i rect \left[\frac{t - \frac{(2k+1)\tau}{2}}{\tau} \right) \right]$$

where d_i =-4 if b_i = 0 and d_i =+4 if b_i = 1

- a. With τ =1ms, plot m(t) for k=1...6.
- b. What is the DC (or average value) of m(t)?
- c. Find the Fourier Series of m(t) and plot its amplitude spectrum.
- d. DSB-SC modulation is used to transmit m(t) with a carrier wave of carrier signal $10\cos(2\pi f_c t)$ with $f_c = 20$ kHz. Plot the RF signal.
 - e. Plot the spectrum of the DSB-SC modulated signal
 - f. With τ =1ms find the average energy per bit in the modulated signal.
- g. How would the spectrum of the RF signal change with a different mapping of bits to levels, specifically, changing d_i =-2 if b_i = 0 and d_i =+4 if b_i = 1 to d_i =0 if d_i =0 and d_i =+4.
- **5.** Let s(t) be an DSB-SC signal, $x_{RF}(t) = x(t) \cos(2\pi f_c t)$ with $f_c = 100$ kHz and x(t)=cos(2000 π t).
 - a. There is only a frequency error in the coherent detector of Δf =20Hz. Find the output of the coherent detector, y(t) and plot y(t).
 - b. There is only a phase error in the coherent detector of 45° . Find the output of the coherent detector, y(t) and plot y(t).
- **6.** In BPSK receivers why is both carrier and bit synchronization needed?

7. A received binary signal with a bit rate of 1kb/s is with f_c =100 KHz

$$10^{-5}\cos(2\pi f_c t) \ 0 \le t \le T_b$$

or
 $-10^{-5}\cos(2\pi f_c t) \ 0 \le t \le T_b$

- a. Is this a BPSK or ASK signal?
- b. What is the bandwidth of RF signal?
- c. What is the E_b the energy/bit?
- 8. Assume that a DSB-SC signal is subjected to intentional interference I(t). The received signal is of the form,

```
y(t)=10 x(t) \cos(2 \pi f_c t)+I(t)
Where
x(t) = cos(2 \pi 10000t)
and
I(t) = \sqrt{2}\cos(2\pi(f_c + \Delta f)t) where \Delta f < 10kHz that is, the interferer is in the passband of the DSB-SC
signal,
```

- a. What is the bandwidth of y(t)?
- b. What is the power in y(t)?
- c. Find the Signal-to-interference power ratio (in dB) at the output of a synchronous receiver?
- 9. In the BPSK receiver output of the receiver filter is sampled at the bit rate and the sample value compared to a threshold, why the threshold value = 0.
- 10. In the ASK receiver output of the receiver filter is sampled at the bit rate and the sample value compared to a threshold, why the threshold value not equal to zero.